Chapitre 14

Espaces vectoriels

Plan du chapitre

1	Espac	ces vectoriels
	1.1	Définition et structure
	1.2	Exemples fondamentaux d'espaces vectoriels
	1.3	Autres espaces vectoriels
	1.4	Combinaison linéaire
2	Sous-espaces vectoriels	
	2.1	Définition-caractérisation et exemples
	2.2	S.e.v. engendrés (par une partie X)
	2.3	S.e.v. engendrés (par une famille finie)
3	Fami	lles génératrices, familles libres, bases
	3.1	Familles génératrices (finies)
	3.2	Familles libres (finies)
	3.3	Caractérisations d'une famille liée
	3.4	Propriétés des familles libres et génératrices
	3.5	Bases (cas fini)
4	Somr	ne de s.e.v
	4.1	Définition et exemples
	4.2	Somme directe de s.e.v
	4.3	S.e.v. supplémentaires
5	Fami	lles infinies
	5.1	Combinaisons linéaires d'une famille (finie ou infinie)
	5.2	S.e.v. engendré par une famille (finie ou infinie)
	5.3	Famille génératrice (finie ou infinie)
	5.4	Famille libre (finie ou infinie)
	5.5	Base (finie ou infinie)
6	Comi	nléments : algèbre (hors-programme)

Hypothèse

Dans tout ce chapitre, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

De plus, $(E, +, \bullet)$ désigne un \mathbb{K} -espace vectoriel (cf définition ci-dessous).

1 Espaces vectoriels

1.1 Définition et structure

Définition 14.1 (Espace vectoriel)

Soit E un ensemble muni d'une l.c.i. + et d'une loi (de composition) externe notée

•:
$$\mathbb{K} \times E \to E$$

 $(\lambda, x) \mapsto \lambda \cdot x$

On dit que $(E, +, \bullet)$ est un \mathbb{K} -espace-vectoriel si :

- 1. (E,+) est un groupe abélien
- 2. Pour tous $x, y \in E$ et pour tous $\lambda, \mu \in \mathbb{K}$, on a :

EV1.
$$(\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$$

EV3.
$$\lambda \cdot (\mu \cdot x) = (\lambda \mu) \cdot x$$

EV2.
$$\lambda \cdot (x+y) = \lambda \cdot x + \lambda \cdot y$$

EV4.
$$1 \cdot x = x$$

Les éléments de E sont appelés vecteurs. Les éléments de $\mathbb K$ sont appelés scalaires.

On omet souvent de préciser les lois + et \cdot ainsi que le corps $\mathbb K$: on pourra ainsi écrire que E est un espace vectoriel. En abrégé, cela donne "E est un $\mathbb K$ -e.v." ou encore "E est un e.v.".

Remarque. Un espace vectoriel E n'est jamais vide car, en tant que groupe pour +, il contient un élément neutre qu'on note en général 0_E et qu'on appelle le vecteur nul.

Proposition 14.2 (Calcul avec $0_{\mathbb{K}}, 0_E$ **dans un e.v.)**

Soit $x \in E$ et $\lambda \in \mathbb{K}$. Alors

- $0_{\mathbb{K}} \cdot x = 0_E$
- $\lambda \cdot 0_E = 0_E$
- $\lambda \cdot x = 0_E \implies \lambda = 0_{\mathbb{K}}$ ou $x = 0_E$

Démonstration.

• Par EV1, on a

$$0_{\mathbb{K}} \cdot x = (0_{\mathbb{K}} + 0_{\mathbb{K}}) \cdot x$$
$$= 0_{\mathbb{K}} \cdot x + 0_{\mathbb{K}} \cdot x$$

et donc en ajoutant $-0_{\mathbb{K}} \cdot x$ des deux côtés, on trouve $0_E = 0_{\mathbb{K}} \cdot x$.

- On montre le second point de la même manière en calculant $\lambda \cdot (0_E + 0_E)$ et avec EV2.
- Enfin, si $\lambda \cdot x = 0_E$, supposons par l'absurde que $\lambda \neq 0_K$ et $x \neq 0_E$. Alors λ admet un inverse λ^{-1} , et par EV3 et EV4,

$$x = 1_{\mathbb{K}} \cdot x = (\lambda^{-1}\lambda) \cdot x = \lambda^{-1} \cdot (\lambda \cdot x) = \lambda^{-1} \cdot 0_E = 0_E$$

où la dernière égalité est justifiée par le second point. Ainsi, $0_E \neq x = 0_E$. Contradiction. D'où le résultat.

Proposition 14.3 (Calcul avec "-" dans un e.v.)

Soit $x, y \in E$ et $\lambda, \alpha, \beta \in \mathbb{K}$. Alors

- $(-\lambda) \cdot x = \lambda \cdot (-x) = -(\lambda \cdot x)$ et en particulier $(-1_{\mathbb{K}}) \cdot x = -x$
- $(\alpha \beta) \cdot x = \alpha \cdot x \beta \cdot x$
- $\lambda \cdot (x y) = \lambda \cdot x \lambda \cdot y$

Bien souvent, on notera 0 pour signifier le vecteur nul 0_E et le scalaire nul 0_K (le contexte permettant souvent d'éviter toute ambiguité). De plus, on omettra la loi • et on notera seulement λx au lieu de $\lambda \cdot x$.

1.2 Exemples fondamentaux d'espaces vectoriels

On pourra utiliser *sans démonstration* que les ensembles suivants sont des espaces vectoriels. Par souci de concision, on n'introduira pas toutes les variables utilisées, le contexte et la notation permettant de s'y retrouver.

• $\mathbb{K}^{\mathbb{N}}$ est un \mathbb{K} -e.v. muni des lois usuelles

$$(u_n) + (v_n) := (u_n + v_n)$$
$$\lambda \cdot (u_n) := (\lambda u_n)$$

• $\mathbb{K}^{\mathbb{K}}$ est un \mathbb{K} -e.v. muni des lois usuelles

$$f + g : x \mapsto f(x) + g(x)$$

 $\lambda f : x \mapsto \lambda f(x)$

• Pour tous $n, p \in \mathbb{N}^*$, $\mathcal{M}_{n,p}(\mathbb{K})$ est un \mathbb{K} -e.v. muni des lois usuelles :

$$A + B = (a_{ij} + b_{ij})$$
$$\lambda A := (\lambda a_{ij})$$

• $\mathbb{K}[X]$ est un \mathbb{K} -e.v. muni des lois usuelles :

$$\left(\sum_{k=0}^{n} a_k X^k\right) + \left(\sum_{k=0}^{m} b_k X^k\right) = \sum_{k=0}^{\max(m,n)} (a_k + b_k) X^k$$
$$\lambda \left(\sum_{k=0}^{n} a_k X^k\right) := \sum_{k=0}^{n} (\lambda a_k) X^k$$

• $\mathbb{K}(X)$ est un \mathbb{K} -e.v. muni des lois usuelles :

$$\frac{A}{B} + \frac{C}{D} := \frac{AD + BC}{BD}$$
$$\lambda \frac{A}{B} := \frac{\lambda A}{B}$$

• Le corps \mathbb{K} lui-même est un \mathbb{K} -e.v. : la loi + est celle du corps \mathbb{K} , et la loi \cdot correspond à la l.c.i. \times :

$$\forall \lambda \in \mathbb{K} \quad \forall x \in \mathbb{K} \qquad \lambda \cdot x := \lambda \times x = \lambda x$$

• Pour tout $n \in \mathbb{N}^*$, \mathbb{K}^n est un \mathbb{K} -e.v. muni des lois suivantes :

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$
$$\lambda(x_1,\ldots,x_n)=(\lambda x_1,\ldots,\lambda x_n)$$

• Si E est un \mathbb{C} -e.v., alors E est un \mathbb{R} -e.v. En effet, si les propriétés **EV1**. à **EV4**. sont vérifiées pour tous les scalaires $\lambda, \mu \in \mathbb{C}$ alors elles le sont en particulier pour tous $\lambda, \mu \in \mathbb{R}$.

G. Peltier 3 / 23

1.3 Autres espaces vectoriels

Rappel: soit $n \ge 2$ un entier. Étant donnés n ensembles A_1, \ldots, A_n , on note

$$A_1 \times \cdots \times A_n := \{(a_1, \dots, a_n) \mid a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n\}$$

Proposition 14.4 (Espace produit)

Soit $n \ge 2$ un entier, E_1, \dots, E_n des \mathbb{K} -e.v. Alors $E_1 \times \dots \times E_n$ est un \mathbb{K} -e.v. muni des lois suivantes :

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$
$$\lambda(x_1,\ldots,x_n)=(\lambda x_1,\ldots,\lambda x_n)$$

Il y a un abus de notation dans la définition ci-dessus : on a noté + et • pour désigner aussi bien les lois de E_1 , de E_2 , (...), de E_n et de $E_1 \times \cdots \times E_n$. C'est une pratique quasi systématique avec les e.v. : on déduit de quelle loi il s'agit en fonction du contexte 1 .

Remarque. En particulier, $E^n := \underbrace{E \times \cdots \times E}_{n \text{ fois}}$ est un \mathbb{K} -e.v.

Définition 14.5 (Espace \mathbb{K}^{Ω})

Pour tout ensemble Ω , \mathbb{K}^{Ω} est un \mathbb{K} -e.v. muni des lois suivantes :

$$f + g : \Omega \to \mathbb{K}$$
$$x \mapsto f(x) + g(x)$$
$$\lambda f : \Omega \to \mathbb{K}$$
$$x \mapsto \lambda f(x)$$

On notera que si $\lambda \in \mathbb{K}$ et $x, y \in \Omega$ alors x + y ou $\lambda \cdot x$ n'ont pas de sens a priori. Pour autant, les fonctions f + g et λf sont bien définies car les + et \cdot de leur définition s'appliquent à des éléments de l'ensemble d'arrivée, càd \mathbb{K} .

Exemple 1. En particulier, les ensembles $\mathbb{K}^{\mathbb{N}}$ et $\mathbb{K}^{\mathbb{K}}$ sont des \mathbb{K} -e.v.

Exemple 2. Pour tous $a, b \in \mathbb{R}$ tels que $a \leq b$, l'ensemble des applications $f : [a, b] \to \mathbb{K}$ forme un \mathbb{K} -e.v. : c'est l'ensemble $\mathbb{K}^{[a,b]}$.

1.4 Combinaison linéaire

Définition 14.6 (Combinaison linéaire (cas fini))

Soit $n \in \mathbb{N}^*$, $x_1, \dots, x_n \in E$ une famille de vecteurs de E. On dit qu'un vecteur $x \in E$ est une <u>combinaison</u> linéaire de (x_1, \dots, x_n) si

$$x = \sum_{k=1}^{n} \lambda_k x_k = \lambda_1 x_1 + \dots + \lambda_n x_n$$

avec $\lambda_1, \ldots, \lambda_n \in \mathbb{K}$.

4/23 G. Peltier

^{1.} C'est déjà ce qu'on a fait jusqu'à présent : pour la somme A+B, la loi + n'a pas le même sens si A,B sont des matrices, ou des polynômes, ou des entiers, etc.

Exemple 3. Le vecteur $(3, -2, -5) \in \mathbb{R}^3$ s'écrit comme une combinaison linéaire de (1, 1, 0) et de (0, 1, 1) car

$$(3,-2,-5) = (1,1,0) + (0,1,1)$$

Exemple 4. Les "vecteurs" fonctions ch, sh $\in \mathbb{R}^{\mathbb{R}}$ s'écrivent comme une combinaison linéaire des "vecteurs" fonctions $x \mapsto e^x$ et de $x \mapsto e^{-x}$ car

$$chx = e^x + e^{-x}$$

$$shx = e^x + e^{-x}$$

Exemple 5. Tout polynôme de degré 2

$$P = aX^2 + bX + c \in \mathbb{K}[X]$$

peut s'écrire comme une combinaison linéaire de $1, X, X^2$:

$$P = X^2 + X + 1$$

Remarque. On peut étendre la Définition 14.6 au cas n = 0: on pose alors par convention $\sum_{i=1}^{0} (\cdots) = 0_E$. Autrement dit, une combinaison linéaire de n = 0 vecteur donne le vecteur nul 0_E .

2 Sous-espaces vectoriels

2.1 Définition-caractérisation et exemples

On rappelle que E désigne un \mathbb{K} -e.v.

Définition 14.7 (S.e.v.)

On appelle sous-espace vectoriel de E tout ensemble $F \subset E$ qui soit stable par + et \cdot :

$$\forall x, y \in F$$
 $x + y \in F$ et $\forall (\lambda, x) \in \mathbb{K} \times F$ $\lambda \cdot x \in F$

et tel que, muni des lois induites $+': F \to F$ et $\cdot': F \to F$, l'ensemble $(F, +', \cdot')$ est encore un e.v.

On utilisera souvent l'abréviation "F est un s.e.v. de E". En particulier, F admet un élément neutre pour l'addition, 0_F , qui (par unicité de l'élément neutre) vérifie $0_F = 0_E$.

Proposition 14.8 (Caractérisation d'un s.e.v.)

Soit $F \subset E$. Alors F est s.e.v. si et seulement si

- 1. $F \neq \emptyset$
- 2. *F* est stable par combinaison linéaire :

$$\forall \alpha, \beta \in \mathbb{K} \qquad \forall x, y \in \boxed{F} \qquad \alpha x + \beta y \in F$$

Remarque. Pour montrer que $F \neq \emptyset$, on peut notamment vérifier que $0_E \in F$ (on évite d'écrire 0_F tant qu'on n'a pas montré que F est au moins un groupe).

G. Peltier 5 / 23

Remarque. L'assertion 2 signifie bien que F est stable par combinaison linéaire : on a en effet

$$\forall \alpha, \beta \in \mathbb{K} \qquad \forall x, y \in F \qquad \alpha x + \beta y \in F$$

$$\iff \forall n \geq 2 \qquad \forall (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n \qquad \forall (x_1, \dots, x_n) \in F^n \qquad \lambda_1 x_1 + \dots + \lambda_n x_n \in F$$

Exemple 6. $\{0_E\}$ et E sont des s.e.v. de E, parfois appelés sous-espaces triviaux.

Exemple 7. Soit $n \in \mathbb{N}$. Montrer que $\mathbb{R}_n[X]$ est un s.e.v. de $\mathbb{R}[X]$.

Méthode

Pour montrer qu'un ensemble est un espace vectoriel, il suffit bien souvent de montrer qu'il s'agit d'un s.e.v. d'un e.v. plus gros (typiquement ceux de la section 1.2).

Exemple 8. Montrer que $C^0(I, \mathbb{K})$ est un \mathbb{K} -e.v. ²

Exemple 9. Pour tout $n \in \mathbb{N}$, $C^n(I, \mathbb{K})$ est un \mathbb{K} -e.v.

(La démonstration est similaire : on peut montrer que ce sont des s.e.v. de \mathbb{K}^I , ou encore que ce sont des s.e.v. de $C^0(I,\mathbb{K})$, qui est aussi un \mathbb{K} -e.v. par ce qui précède).

Exemple 10. Montrer que $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ est un \mathbb{R} -e.v.

6/23

^{2.} Ici I est un intervalle de $\mathbb R$ non vide et non singleton. On rappelle que $C^0(I,\mathbb K)$ est l'ensemble des fonctions continues de I dans $\mathbb K$.

2.2 S.e.v. engendrés (par une partie X)

Proposition 14.9 (Intersection)

Soit $n \in \mathbb{N}^*$ et F_1, \dots, F_n des s.e.v. de E. Alors $F_1 \cap \dots \cap F_n$ est aussi un s.e.v. de E. Plus généralement, si $(F_i)_{i \in I}$ est une famille quelconque de s.e.v. de E, alors $\bigcap_{i \in I} F_i$ est aussi un s.e.v. de E.

Démonstration. On ne prouve que la deuxième assertion, à savoir que $\bigcap_{i \in I} F_i$ est un s.e.v. de E.

Exemple 11. $C^{\infty}(I,\mathbb{K})$ est un s.e.v. de $C^{0}(I,\mathbb{K})$, ou de $\mathbb{K}^{\mathbb{K}}$: en effet $C^{\infty}(I,\mathbb{K})=$

G. Peltier 7 / 23

Définition 14.10 (S.e.v. engendré par une partie)

Soit X une partie quelconque de E. On appelle <u>sous-espace vectoriel engendré par X</u> l'intersection de tous les s.e.v. F de E qui contiennent X. C'est un s.e.v. de E qu'on note Vect(X).

Dit autrement, si on note $(F_i)_{i \in I}$ la famille de tous les s.e.v. de E qui vérifient $X \subset F_i$, alors

$$Vect(X) := \bigcap_{i \in I} F_i$$

Attention : X est une partie quelconque de E, pas forcément un s.e.v. Par contre, Vect(X) est un s.e.v. de E par définition.

Proposition 14.11

Vect(X) est le plus petit (pour l'inclusion) s.e.v. de E qui contient X.

Dit autrement, pour tout **s.e.v.** G, on a $X \subset G \Longrightarrow \operatorname{Vect}(X) \subset G$.

Exemple. Vect(\varnothing) = $\{0_E\}$: en effet $\{0_E\}$ est un s.e.v. qui contient (forcément) \varnothing , et c'est le plus petit, car pour tout autre s.e.v. G (qui contient forcément \varnothing), on a $\{0_E\} \subset G$.

Proposition 14.12 (Caractérisation de Vect(X))

Vect(X) est exactement l'ensemble des combinaisons linéaires des éléments de X:

$$\operatorname{Vect}(X) = \left\{ \left. \sum_{i=1}^n \lambda_i x_i \, \right| \, n \in \mathbb{N}, \quad (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n, \quad (x_1, \dots, x_n) \in X^n \right\}$$

Rappel: si n=0 dans la somme ci-dessus, alors $\sum_{i=1}^0 (\cdots) := 0_E$. Cela permet d'assurer que $\text{Vect}(\varnothing) = 0_E$.

Exemple 12. On munit \mathbb{C} de sa structure de \mathbb{R} -e.v.

- Si $X = \{1\}$, alors $\text{Vect}(X) = \{\lambda \mid \lambda \in \mathbb{R}\} = \mathbb{R}$; en particulier \mathbb{R} est un s.e.v. de \mathbb{C} (vu comme un \mathbb{R} -e.v.).
- Si $X = \{i\}$, alors $\text{Vect}(X) = \{\lambda i \mid \lambda \in \mathbb{R}\} = i\mathbb{R}$; en particulier \mathbb{R} est un s.e.v. de \mathbb{C} (vu comme un \mathbb{R} -e.v.).
- Si $X = \{1, i\}$, alors Vect $(X) = \{\lambda_1 \ 1 + \lambda_2 i \ | \ \lambda_1, \lambda_2 \in \mathbb{R}\} = \mathbb{C}$.

Exemple 13. On munit \mathbb{C} de sa structure de \mathbb{C} -e.v.

- Si $X = \{1\}$, alors
- Si $X = \{i\}$, alors
- Si $X = \{0\}$, alors

Proposition 14.13

Soit A, B deux parties de E. Si $A \subset B$, alors $Vect(A) \subset Vect(B)$.

8/23 G. Peltier

2.3 S.e.v. engendrés (par une famille finie)

Définition 14.14 (S.e.v. engendré par des vecteurs)

Soit $n \ge 1$ et $x_1, \dots, x_n \in E$. On note

$$\operatorname{Vect}(x_1,\ldots,x_n) := \left\{ \sum_{i=1}^n \lambda_i x_i \mid \lambda_1,\ldots,\lambda_n \in \mathbb{K} \right\} = \operatorname{Vect}(\left\{x_1,\ldots,x_n\right\})$$

et on l'appelle le sous-espace engendré par la famille (x_1, \ldots, x_n) .

Exemple 14. Dans l'e.v. $\mathbb{K}[X]$, on a

$$Vect(1, X, \dots, X^n) =$$

Exemple 15. Dans l'e.v. \mathbb{R}^3 ,

Vect
$$[(1,0,0), (0,1,0)] = {\lambda(1,0,0) + \mu(0,1,0) | \lambda, \mu \in \mathbb{R}}$$

= ${(\lambda, \mu, 0) | \lambda, \mu \in \mathbb{R}}$
= ${(x,y,z) \in \mathbb{R}^3 | z = 0}$

Exemple 16. Pour tout vecteur $u \in E \setminus \{0_E\}$, on note

$$\mathbb{K}u := \text{Vect}(u) = \{\lambda u \mid \lambda \in \mathbb{K}\}$$

On dit que $\mathbb{K}u$ est une droite vectorielle

(si $u = 0_E$, alors $\mathbb{K}u = \{0_E\}$ n'est pas une droite vectorielle).

Exemple 17. Dans $\mathcal{M}_n(\mathbb{K})$, on a

$$Vect(I_n) = \mathbb{K}I_n = {\lambda I_n \mid \lambda \in \mathbb{K}}$$

Cela correspond à l'ensemble des matrices scalaires, qui est donc un s.e.v.

Exemple 18. Dans $\mathcal{M}_n(\mathbb{K})$, on a

$$\operatorname{Vect}\left(\left(\begin{array}{ccc} 1 & \mathbf{0} \\ 0 & \ddots \\ \mathbf{0} & 0 \end{array}\right), \left(\begin{array}{ccc} 0 & \mathbf{0} \\ 1 & \ddots \\ \mathbf{0} & 0 \end{array}\right), \dots, \left(\begin{array}{ccc} 0 & \mathbf{0} \\ 0 & \ddots \\ \mathbf{0} & 1 \end{array}\right)\right)$$

$$= \left\{\lambda_{1}\left(\begin{array}{ccc} 1 & \mathbf{0} \\ 0 & \ddots \\ \mathbf{0} & 0 \end{array}\right) + \lambda_{2}\left(\begin{array}{ccc} 0 & \mathbf{0} \\ 1 & \ddots \\ \mathbf{0} & 0 \end{array}\right) + \dots + \lambda_{n}\left(\begin{array}{ccc} 0 & \mathbf{0} \\ 0 & \ddots \\ \mathbf{0} & 1 \end{array}\right) \middle| \lambda_{1}, \dots, \lambda_{n} \in \mathbb{K}\right\}$$

$$= \left\{\left(\begin{array}{ccc} \lambda_{1} & \mathbf{0} \\ \lambda_{2} & \ddots \\ \mathbf{0} & \lambda_{n} \end{array}\right) \middle| \lambda_{1}, \dots, \lambda_{n} \in \mathbb{K}\right\} = D_{n}(\mathbb{K})$$

En particulier, $D_n(\mathbb{K})$ est un s.e.v. de $\mathcal{M}_n(\mathbb{K})$.

G. Peltier 9 / 23

3 Familles génératrices, familles libres, bases

3.1 Familles génératrices (finies)

Définition 14.15 (Famille génératrice (cas fini))

Soit (g_1, \ldots, g_n) une famille de vecteurs de E. Les deux assertions suivantes sont équivalentes :

- $Vect(g_1, \ldots, g_n) = E$
- Tout vecteur $x \in E$ peut s'écrire comme une combinaison linéaire de (g_1, \dots, g_n)

Lorsque c'est le cas, on dit que (g_1, \dots, g_n) est une famille génératrice (de E).

On dit également que la famille engendre *E*.

Proposition 14.16 (Caractérisation pour avoir une famille génératrice (cas fini))

Soit $n \in \mathbb{N}^*$. Une famille $(g_1, \dots, g_n) \in E^n$ est génératrice si et seulement si :

$$\forall x \in E \quad \exists \lambda_1, \dots, \lambda_n \in \mathbb{K} \qquad x = \sum_{i=1}^n \lambda_i g_i$$
 (G)

Démonstration. On a

$$x \in \text{Vect}(g_1, \dots, g_n) \iff \exists \lambda_1, \dots, \lambda_n \in \mathbb{K} \qquad x = \sum_{i=1}^n \lambda_i g_i$$

Ainsi, l'assertion G signifie exactement : $\forall x \in E$ $x \in \text{Vect}(g_1, \dots, g_n)$. Cela équivaut à $E \subset \text{Vect}(g_1, \dots, g_n)$. L'inclusion réciproque est évidente. Finalement l'assertion G équivaut à $E = \text{Vect}(g_1, \dots, g_n)$. D'où le résultat. \square

Exemple 19. Dans l'e.v. \mathbb{K}^n , la famille $(e_i)_{1 \le i \le n}$ définie par

$$e_1 = (1,0,0,\ldots,0)$$
 $e_2 = (0,1,0,\ldots,0)$ \ldots $e_n = (0,0,\ldots,0,1)$

est une famille génératrice de \mathbb{K}^n . En effet, pour tout $x=(x_1,\ldots,x_n)\in\mathbb{K}^n$, on a

$$x = x_1(1,0,0,\ldots,0) + x_2(0,1,0,\ldots,0) + \cdots + x_n(0,0,\ldots,0,1)$$
$$= \sum_{i=1}^{n} x_i e_i$$

Exemple 20. Dans le \mathbb{R} -e.v. \mathbb{C} , la famille (1,i) est génératrice, car pour tout $z \in \mathbb{C}$, il existe $\lambda, \mu \in \mathbb{R}$ tels que

$$z = \lambda 1 + \mu i$$

il suffit de prendre $\lambda = \text{Re}(z)$ et $\mu = \text{Im}(z)$.

Exemple 21. Dans l'e.v. $\mathbb{K}_n[X]$, la famille $(1, X, \dots, X^n)$ est génératrice par l'exemple 14.

Remarque. Attention, pour être une famille génératrice de E, il faut que tous les vecteurs de la famille soient des éléments de E. Ainsi, la famille $(1, X, \dots, X^{n+1})$ n'est pas génératrice de $\mathbb{K}_n[X]$ car $X^{n+1} \notin \mathbb{K}_n[X]$.

10 / 23 G. Peltier

3.2 Familles libres (finies)

Définition 14.17 (Famille libre (cas fini))

Soit $n \in \mathbb{N}^*$. On dit qu'une famille $(x_1, \dots, x_n) \in E^n$ est une <u>famille libre</u> si

$$orall \lambda_1, \ldots, \lambda_n \in \mathbb{K} \qquad \left(\sum_{i=1}^n \lambda_i x_i = 0 \quad \Longrightarrow \quad (\lambda_1, \ldots, \lambda_n) = (0, \ldots, 0) \right)$$

Si la famille (x_1, \ldots, x_n) n'est pas libre, on dit que (x_1, \ldots, x_n) est une <u>famille liée</u>. Cela signifie que

$$\exists \lambda_1, \ldots, \lambda_n \in \mathbb{K}$$
 $\left(\sum_{i=1}^n \lambda_i x_i = 0 \text{ et } (\lambda_1, \ldots, \lambda_n) \neq (0, \ldots, 0)\right)$

ou encore

$$\exists (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n \setminus \{0_{\mathbb{K}^n}\} \qquad \sum_{i=1}^n \lambda_i x_i = 0$$

Si la famille $(x_1, ..., x_n)$ est libre, on dit également que les vecteurs $x_1, ..., x_n$ sont <u>linéairement indépendants</u>. Si la famille est liée, on dira que les vecteurs $x_1, ..., x_n$ sont linéairement dépendants.

Méthode

Pour montrer qu'une famille (x_1,\ldots,x_n) est libre, il faut se donner une combinaison linéaire quelconque des x_1,\ldots,x_n , avec des inconnues $\lambda_1,\ldots,\lambda_n\in\mathbb{K}$, puis, en *supposant que cette CL est nulle*, càd $\sum_{i=1}^n\lambda_ix_i=0$, il faut montrer que $\lambda_1=\cdots=\lambda_n=0$.

Exemple 22. Dans le \mathbb{R} -e.v. \mathbb{R}^3 , si on pose $e_1 = (1,0,0)$, $e_2 = (0,1,0)$ et $e_3 = (0,0,1)$, alors la famille (e_1,e_2,e_3) est libre.

Exemple 23. Dans le \mathbb{R} -e.v. \mathbb{R}^3 , si on pose $f_1 = (1, 1, 1)$, $f_2 = (0, 1, 1)$ et $f_3 = (0, 0, 1)$, alors la famille (f_1, f_2, f_3) est libre.

G. Peltier 11 / 23

Méthode

Pour montrer qu'une famille (x_1, \ldots, x_n) est liée, il suffit de trouver n scalaires $\lambda_1, \ldots, \lambda_n$ non tous nuls tels que $\sum_{i=1}^n \lambda_i x_i = 0$.

Exemple 24. Dans le \mathbb{R} -e.v. \mathbb{R}^3 , si on pose $u_1 = (1, 1, 0)$, $u_2 = (1, 0, 0)$ et $u_3 = (0, 1, 0)$, alors la famille (u_1, u_2, u_3) est liée. En effet,

Exemple 25. Si on considère $\mathbb C$ comme un $\mathbb R$ -e.v. alors la famille (1,i) est libre : pour tous $\lambda_1,\lambda_2\in\mathbb R$

$$\lambda_1 1 + \lambda_2 i = 0 \implies \lambda_1 = \lambda_2 = 0$$

Exemple 26. Si on considère $\mathbb C$ comme un $\mathbb C$ -e.v. alors la famille (1,i) est liée : en effet (si on pose $\lambda_1=i\in\mathbb C$ et $\lambda_2=-1\in\mathbb C$)

$$(\lambda_1 1 + \lambda_2 i =)$$
 $i 1 + (-1) i = 0$

Remarque.

• Si une famille (x_1, \dots, x_n) contient un vecteur nul $x_j = 0$, alors la famille est liée :

$$0x_1 + 0x_2 + \dots + 0x_{j-1} + 1 \underbrace{x_j}_{=0} + 0x_{j+1} + \dots + 0x_n = 0$$

On a bien $\sum_{i=1}^{n} \lambda_i x_i = 0$ avec une famille de *n* scalaires non tous nuls :

$$\lambda_i = \delta_{i,j} := \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$$

• Une famille à un vecteur, (x), est libre si et seulement si $x \neq 0$.

3.3 Caractérisations d'une famille liée

Définition 14.18 (Vecteurs colinéaires)

Deux vecteurs $x, y \in E$ sont dits colinéaires si

$$\exists \lambda \in \mathbb{K}$$
 $(x = \lambda y \quad \text{ou} \quad y = \lambda x)$

Attention,

$$(\exists \lambda \in \mathbb{K} \quad x = \lambda y) \implies (\exists \mu \in \mathbb{K} \quad y = \mu x)$$

Plus précisément, si $x = \lambda y$ avec $\lambda \neq 0$, alors on peut déduire que $y = \frac{1}{\lambda} x = \mu x$ avec $\mu := \frac{1}{\lambda}$.

Cependant si $\lambda = 0$, ce n'est pas toujours possible. Par exemple avec x = (0,0) et y = (1,1), on a x = 0y mais on ne peut pas avoir $y = \mu x$ avec $\mu \in \mathbb{K}$.

Proposition 14.19 (Caractérisation du caractère lié (2 vecteurs))

La famille (x, y) est liée si et seulement si x, y sont colinéaires.

Démonstration.

Exemple 27. On considère

$$u = (1, 2, -1)$$
 $v = (3, 6, -3)$

On a v = 3u (ou $u = \frac{1}{3}v$) donc u, v sont colinéaires : la famille (u, v) est liée.

Exemple 28. On considère

$$u = (1, 2, -1)$$
 $w = (-2, -4, 0)$

On remarque que u, w ne sont pas colinéaires, donc (u, w) est libre.

On peut généraliser la proposition 14.19 à n vecteurs de cette façon :

Proposition 14.20 (Caractérisation d'une famille liée (n vecteurs))

Soit $n \ge 2$. La famille (x_1, \dots, x_n) est liée si et seulement si on peut exprimer un vecteur de la famille comme une combinaison linéaire des autres. Autrement dit,

$$(x_1,\ldots,x_n)$$
 est liée ssi $\exists j \in [1,n]$ $x_j \in \text{Vect}(x_1,\ldots,x_{j-1},x_{j+1},\ldots,x_n)$

ssi
$$\exists j \in [1, n]$$
 $\exists (\lambda_1, \dots, \lambda_{j-1}, \lambda_{j+1}, \dots, \lambda_n) \in \mathbb{K}^{n-1}$ $x_j = \sum_{\substack{i=1 \ i \neq j}}^n \lambda_i x_i$

G. Peltier

Démonstration. Similaire à la proposition 14.19 : par exemple si

$$x_j = \sum_{\substack{i=1\\i\neq j}}^n \lambda_i x_i$$

alors

$$\lambda_1 x_1 + \dots + \lambda_{j-1} x_{j-1} + (-1)x_j + \lambda_{j+1} x_j + \dots + \lambda_n x_n = 0$$

avec une famille de n scalaires non tous nuls $(\lambda_1,\ldots,\lambda_{j-1},\underbrace{-1}_{\neq 0},\lambda_{j+1},\ldots,\lambda_n)$.

Exemple 29. On considère

$$u = (1,0)$$
 $v = (0,1)$ $w = (1,2)$

Alors la famille (u, v, w) est liée car w = 1 u + 2 v.

Pourtant, on notera que ses vecteurs ne sont pas deux à deux colinéaires : les familles (u, v), (v, w) et (w, u) sont toutes libres.

Remarque. Si une famille comporte deux vecteurs identiques, elle est liée. En effet, si on considère une famille $(u, u, x_3, ..., x_n)$, alors le premier vecteur u peut s'exprimer comme une combinaison linéaires des vecteurs suivants $u, x_3, ..., x_n$:

$$u = 1 u + 0x_3 + \cdots + 0x_n$$

3.4 Propriétés des familles libres et génératrices

Remarque. Le caractère libre, lié ou générateur d'une famille ne dépend pas de l'ordre des vecteurs de la famille.

Définition 14.21

Si ${\mathcal F}$ est une famille de vecteurs, on dit que :

- 1. \mathcal{G} est une sur-famille de \mathcal{F} si on obtient \mathcal{G} à partir de \mathcal{F} en lui ajoutant zéro, un ou plusieurs vecteurs.
- 2. \mathcal{E} est une sous-famille de \mathcal{F} si \mathcal{F} est une sur-famille de \mathcal{E} .

Exemple 30. Dans \mathbb{C} , la famille $\mathcal{G} = (1, i, j)$ est une sur-famille de (1, i) et de (i, j), mais ce n'est pas une sur-famille de (1, 2i).

Les sous-familles de $\mathcal{F} = (1,i)$ sont (1,i), (1), (i) et la famille vide.

14 / 23

Théorème 14.22

- 1. Toute sur-famille d'une famille génératrice est génératrice.
- 2. Toute sur-famille d'une famille liée est liée.
- 3. Toute sous-famille d'une famille libre est libre.

Démonstration. On considère la première assertion. Soit $(x_1, ..., x_n)$ une famille génératrice et $y \in E$. On va se contenter de montrer que $(x_1, ..., x_n, y)$ est génératrice.

Soit $x \in E$. Montrons que $x \in \text{Vect}(x_1, \dots, x_n, y)$. Comme (x_1, \dots, x_n) est génératrice, on a $x \in \text{Vect}(x_1, \dots, x_n)$, donc

$$\exists \lambda_1, \dots, \lambda_n \in \mathbb{K}$$
 $x = \sum_{i=1}^n \lambda_i x_i$ \Longrightarrow $\exists \lambda_1, \dots, \lambda_n \in \mathbb{K}$ $x = \sum_{i=1}^n \lambda_i x_i + 0y$

donc $x \in \text{Vect}(x_1, \dots, x_n, y)$. Par arbitraire sur x, (x_1, \dots, x_n, y) est génératrice.

3.5 Bases (cas fini)

Définition 14.23 (Non officiel: décomposition selon une famille)

Soit (x_1,\ldots,x_n) une famille de vecteurs de E. On dit qu'un vecteur $x\in E$ est <u>décomposable</u> selon (x_1,\ldots,x_n) si $x\in \mathrm{Vect}(x_1,\ldots,x_n)$, càd si

$$\exists \lambda_1, \dots, \lambda_n \in \mathbb{K}$$
 $x = \sum_{i=1}^n \lambda_i x_i$

Toute famille $(\lambda_1, \dots, \lambda_n)$ qui vérifie cela est appelée <u>une</u> décomposition de x selon (x_1, \dots, x_n) .

Exemple 31. Si u = (1,0), v = (0,1) et w = (1,1), alors le vecteur x = (-2,3) est décomposable selon (u,v,w):

$$x = (-2,3) = (1,0) + (0,1) + (1,1)$$

$$x = (-2,3) = (1,0) + (0,1) + (1,1)$$

On voit que *x* admet plusieurs décompositions différentes : il n'y a pas forcément unicité de la décomposition.

Exemple 32. Si u = (1,0,0) et v = (0,1,0), alors le vecteur x = (0,0,3) n'est pas décomposable selon (u,v): si c'était le cas, on en déduirait facilement une contradiction.

G. Peltier

Lemme 14.24 (Unicité de la décomposition pour une famille libre)

Soit (x_1, \ldots, x_n) une famille libre. Alors pour tous scalaires $(\lambda_i)_{1 \le i \le n}$ et $(\mu_i)_{1 \le i \le n}$,

$$\sum_{i=1}^{n} \lambda_{i} x_{i} = \sum_{i=1}^{n} \mu_{i} x_{i} \implies \forall i \in [[1, n]] \quad \lambda_{i} = \mu_{i}$$

Démonstration. En effet,

$$\sum_{i=1}^{n} \lambda_{i} x_{i} = \sum_{i=1}^{n} \mu_{i} x_{i} \implies \sum_{i=1}^{n} (\lambda_{i} - \mu_{i}) x_{i} = 0$$

$$\implies (\lambda_{1} - \mu_{1}, \dots, \lambda_{n} - \mu_{n}) = 0 \quad \text{car } (x_{1}, \dots, x_{n}) \text{ est libre}$$

$$\implies \forall i \in [1, n] \quad \lambda_{i} = \mu_{i}$$

Définition 14.25 (Base)

On dit que (e_1, \ldots, e_n) est une base (de E) si (e_1, \ldots, e_n) est libre ET génératrice.

Soit (e_1, \ldots, e_n) une famille de E.

 (e_1,\ldots,e_n) est génératrice \iff Tout vecteur $x\in E$ est décomposable selon (e_1,\ldots,e_n)

 (e_1,\ldots,e_n) est libre $\iff \forall x\in E$, **SI** x est décomposable selon (e_1,\ldots,e_n) , **ALORS** la décomposition est unique

 (e_1,\ldots,e_n) est une base \iff Tout vecteur $x\in E$ est décomposable selon (e_1,\ldots,e_n) **ET** cette décomposition est unique

Dit autrement (avec les termes officiels):

Théorème 14.26

Soit (e_1, \ldots, e_n) une famille dans E.

1. (e_1, \ldots, e_n) est génératrice si pour tout $x \in E$,

$$\exists (\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n \qquad x = \sum_{i=1}^n \lambda_i e_i$$

- 2. (e_1, \ldots, e_n) est libre si, pour tout $x \in E$ tel que l'assertion ci-dessus soit vraie, le n-uplet $(\lambda_1, \ldots, \lambda_n)$ est **unique**.
- 3. (e_1, \ldots, e_n) est une base si pour tout $x \in E$,

$$\exists ! (\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n \qquad x = \sum_{i=1}^n \lambda_i e_i$$

Si $(\lambda_1, \dots, \lambda_n)$ est (l'unique) n-uplet qui vérifie cette assertion, les scalaires $\lambda_1, \dots, \lambda_n$ sont appelés les coordonnées de x dans la base (e_1, \dots, e_n) .

Remarque. Attention! Pour un vecteur $x \in E$, on notera souvent x_1, \ldots, x_n ses coordonnées dans une base donnée. Dans ce cas x_1, \ldots, x_n jouent le rôle des scalaires $\lambda_1, \ldots, \lambda_n$ du théorème ci-dessus.

Exemple 33 (très important!). La famille $\mathcal{B} = (e_1, \dots, e_n)$, avec

$$e_1 = (1,0,0,\ldots,0)$$
 $e_2 = (0,1,0,\ldots,0)$ \ldots $e_n = (0,0,\ldots,0,1)$

est une base de \mathbb{K}^n appelée base canonique de \mathbb{K}^n . Si

$$x = (x_1, \ldots, x_n) \in \mathbb{K}^n$$

alors $x = x_1e_1 + \dots + x_ne_n = \sum_{i=1}^n x_ie_i$. Autrement dit, les *scalaires* x_1, \dots, x_n sont les coordonnées de x dans la base canonique (e_1, \dots, e_n) .

Exemple 34. La famille $(X^k)_{0 \le k \le n}$ est une base de $\mathbb{K}_n[X]$. En effet, on a vu au chapitre sur les polynômes que tout $P \in \mathbb{K}_n[X]$ s'écrit de manière unique comme

$$P = \sum_{k=0}^{n} a_k X^k = a_0 X^0 + a_1 X^1 + \dots + a_n X^n$$

Les scalaires a_0, \ldots, a_n sont ainsi les coordonnées de P dans la base $(X^k)_{0 \le k \le n}$.

4 Somme de s.e.v.

4.1 Définition et exemples

Proposition 14.27 (S.e.v. F + G)

Soit F, G deux s.e.v. de E. On pose (rappel)

$$F + G := \{ y + z \mid y \in F, z \in G \}$$
$$= \{ x \in E \mid \exists x_F \in F \quad \exists x_G \in G \qquad x = x_F + x_G \}$$

Alors F + G est un s.e.v. de E appelé somme de F et de G.

Dit autrement, F + G est l'ensemble des vecteurs qui peuvent se décomposer en la somme d'un vecteur de F et d'un vecteur de G, et cet ensemble est un s.e.v.

Exemple 35. Si on voit $\mathbb C$ comme un $\mathbb R$ -e.v., alors on a vu que $\begin{cases} \mathbb R = \operatorname{Vect}(1) \\ i\mathbb R = \operatorname{Vect}(i) \end{cases}$ donc $\mathbb R$ et $i\mathbb R$ sont bien des s.e.v. et

$$\mathbb{R} + i\mathbb{R} = \mathbb{C}$$

(qui est bien un s.e.v. de \mathbb{C}).

Remarque. ATTENTION ! $F+G \neq F \cup G$. En général, $F \cup G$ n'est même pas un s.e.v.

En utilisant l'exemple ci-dessus, $\mathbb{R} \cup i\mathbb{R}$ n'est pas un s.e.v. : 1, i sont des éléments de $\mathbb{R} \cup i\mathbb{R}$ mais $1 + i \notin \mathbb{R} \cup i\mathbb{R}$. Donc + n'est pas une l.c.i. sur $\mathbb{R} \cup i\mathbb{R}$.

G. Peltier 17 / 23

Exemple 36. Dans \mathbb{R}^3 , on considère

$$F_1 := \{(x, y, z) \mid x + y + z = 0\}$$
 et $F_2 := \{(x, y, z) \mid x = y = z\}$

alors F_1 , F_2 sont des s.e.v. et $F_1 + F_2 = \mathbb{R}^3$.

Proposition 14.28

Soit F, G deux s.e.v. de E. Le s.e.v. F + G est le plus petit s.e.v. contenant F et G, càd $F + G = \text{Vect}(F \cup G)$.

Remarque. On montre facilement que

$$F+G=G+F$$

$$F+F=F$$

$$F+E=E$$

4.2 Somme directe de s.e.v.

Définition 14.29

Soit *F*, *G* deux s.e.v. Par définition,

$$\forall x \in F + G$$
 $\exists (x_F, x_G) \in F \times G$ $x = x_F + x_G$

On dit que F,G sont en <u>somme directe</u> si, pour tout $x \in F + G$, la décomposition de x en $x_F + x_G$ est **unique**. Autrement dit, si

$$\forall x \in F + G$$
 $\exists! (x_F, x_G) \in F \times G$ $x = x_F + x_G$

Lorsque F, G sont en somme directe, on note $F \oplus G$ leur somme au lieu de F + G.

18 / 23

Proposition 14.30

Soit F, G deux s.e.v. de E. Les deux assertions suivantes sont équivalentes :

- 1. *F* et *G* sont en somme directe.
- 2. $F \cap G = \{0\}$.

Démonstration. Montrons $1 \implies 2$. Soit $x \in F \cap G$. Alors on peut écrire deux décompositions de x:

$$x = \underbrace{x}_{\in F} + \underbrace{0}_{\in G}$$
$$x = \underbrace{0}_{\in F} + \underbrace{x}_{\in G}$$

Comme F,G sont en somme directe, la décomposition de x est unique. Ainsi x=0. Ainsi $F\cap G\subset\{0\}$ et l'autre inclusion est évidente.

Montrons 2 \implies 1. Soit $x \in F + G$. Supposons que x admette deux décompositions

$$\begin{cases} x = x_F + x_G \\ x = y_F + y_G \end{cases}$$

Alors

$$0 = x - x = (x_F - y_F) + (x_G - y_G)$$

Et donc

$$\underbrace{x_F - y_F}_{\in F} = \underbrace{y_G - x_G}_{\in G}$$

Ainsi, $x_F - y_F \in F \cap G$. Or, $F \cap G = \{0\}$. Donc $x_F - y_F = 0 = y_G - x_G$. Par suite, $x_F = y_F$ et $x_G = y_G$. Il y a donc unicité de la décomposition de x. Par arbitraire sur x, F, G sont en somme directe.

4.3 S.e.v. supplémentaires

Définition 14.31

Si $F \oplus G = E$, on dit que F, G sont des s.e.v. supplémentaires (de E).

On dit également que G est un supplémentaire de F.

Proposition 14.32

Soit F,G deux s.e.v. de E. Les trois assertions suivantes sont équivalentes :

- 1. $F \oplus G = E$
- 2. F + G = E et $F \cap G = \{0\}$
- 3. Tout élément de E se décompose de manière unique en la somme d'un élément de F et d'un élément de G :

$$\forall x \in E$$
 $\exists ! (x_F, x_G) \in F \times G$ $x = x_F + x_G$

Exemple 37. Dans \mathbb{R}^3 , les s.e.v.

$$F_1 := \{(x, y, z) \mid x + y + z = 0\}$$
 et $F_2 := \{(x, y, z) \mid x = y = z\}$

G. Peltier 19 / 23

sont supplémentaires : $F_1 \oplus F_2 = \mathbb{R}^3$.

Exemple 38. Dans \mathbb{C} vu comme un \mathbb{R} -e.v., on a $\mathbb{C} = \mathbb{R} \oplus i\mathbb{R}$.

Remarque. Un s.e.v. F peut avoir plusieurs supplémentaires : par exemple $\mathbb{C} = \mathbb{R} \oplus j\mathbb{R}$. Attention à ne pas confondre supplémentaire et complémentaire : F^c n'est jamais un s.e.v. car $0 \notin F^c$.

5 Familles infinies

5.1 Combinaisons linéaires d'une famille (finie ou infinie)

Définition 14.33 (Famille presque nulle)

Soit $(\lambda_i)_{i \in I} \in \mathbb{K}^I$ une famille de scalaires indexée par un ensemble I (fini ou infini).

- On appelle <u>support</u> des $(\lambda_i)_{i \in I}$ l'ensemble des indices $j \in I$ tels que $\lambda_j \neq 0$, càd $S = \{j \in I \mid \lambda_j \neq 0\}$.
- On dit que la famille $(\lambda_i)_{i \in I}$ est presque nulle si son support est fini, et on note alors

$$(\lambda_i)_{i\in I}\in\mathbb{K}^{(I)}$$

Autrement dit, une famille $(\lambda_i)_{i \in I}$ est presque nulle si elle ne possède qu'un nombre fini d'éléments non nuls.

Remarque. Si *I* est fini, alors $\mathbb{K}^{(I)} = \mathbb{K}^{I}$.

Définition 14.34 (Combinaison linéaire (cas général))

Soit $(x_i)_{i\in I}$ une famille (possiblement infinie) de vecteurs de E. On dit qu'un vecteur $x\in E$ est une combinaison linéaire des $(x_i)_{i\in I}$ si

$$\exists (\lambda_i)_{i \in I} \in \mathbb{K}^{(I)}$$
 $x = \sum_{i \in I} \lambda_i x_i = \sum_{j \in S} \lambda_j x_j + 0$

où S désigne le support de $(\lambda_i)_{i \in I}$.

Autrement dit, x est combinaison linéaire des $(x_i)_{i \in I}$ si on peut choisir une sous-famille **finie** $(x_j)_{j \in S}$ de $(x_i)_{i \in I}$ et exprimer x comme une combinaison linéaire des $(x_j)_{j \in S}$.

20 / 23 G. Peltier

Exemple 39. Tout polynôme $P = \sum_{k=0}^{n} a_k X^k$ peut s'écrire comme une combinaison linéaire de la famille (infinie) de polynômes $(X^k)_{k \in \mathbb{N}}$:

$$P = X^{n} + \dots + X + 1$$

 $P = X^{n+4} + X^{n+3} + X^{n} + \dots + X + 1$

5.2 S.e.v. engendré par une famille (finie ou infinie)

Définition 14.35 (S.e.v. engendré par une famille (cas général))

Si $(x_i)_{i \in I}$ est une famille (possiblement infinie) de vecteurs de E, alors on note

$$\operatorname{Vect}(x_i)_{i \in I} := \left\{ \sum_{i \in I} \lambda_i x_i \,\middle|\, (\lambda_i)_{i \in I} \in \mathbb{K}^{(I)} \right\} \qquad = \operatorname{Vect}\left(\left\{x_i \mid i \in I\right\}\right)$$

et on l'appelle le sous-espace engendré par la famille $(x_i)_{i \in I}$.

Comme dans le cas fini, $\text{Vect}(x_i)_{i \in I}$ est l'ensemble des vecteurs qui s'écrivent comme une combinaison linéaire des $(x_i)_{i \in I}$.

Exemple 40. Dans l'e.v. $\mathbb{K}[X]$,

$$\operatorname{Vect}(X^{2k})_{k\in\mathbb{N}} =$$

5.3 Famille génératrice (finie ou infinie)

Définition 14.36 (Famille génératrice (cas général))

Soit $(g_i)_{i\in I}$ une famille (finie ou infinie) de vecteurs de E. Les deux assertions suivantes sont équivalentes :

- $Vect(g_i)_{i \in I} = E$
- **Tout** vecteur $x \in E$ peut s'écrire comme une combinaison linéaire des $(g_i)_{i \in I}$

Lorsque c'est le cas, on dit que $(g_i)_{i \in I}$ est une famille génératrice (de E).

Proposition 14.37 (Caractérisation pour avoir une famille génératrice (cas général))

Une famille $(g_i)_{i \in I}$ est génératrice si et seulement si :

$$\forall x \in E \quad \exists (\lambda_i) \in \mathbb{K}^{(I)} \qquad x = \sum_{i \in I} \lambda_i g_i$$

Exemple 41. Dans l'e.v. $\mathbb{K}[X]$, la famille $(X^k)_{k\in\mathbb{N}}$ est génératrice de $\mathbb{K}[X]$. En effet, pour tout polynôme $P=\sum_{k=0}^n a_k X^k \in \mathbb{K}[X]$, on pose la famille presque nulle $\lambda_k := \begin{cases} a_k & \text{si } k \leq n \\ 0 & \text{si } k > n \end{cases}$ et dans ce cas on a bien

$$P = \sum_{k \in \mathbb{N}} \lambda_k X^k$$

G. Peltier 21 / 23

Exemple 42. Soit $\alpha \in \mathbb{K}$. Alors la famille $((X - \alpha)^k)_{k \in \mathbb{N}}$ est génératrice de $\mathbb{K}[X]$. En effet, pour tout polynôme $P = \sum_{k=0}^n a_k X^k \in \mathbb{K}[X]$, comme deg $P \le n$, on a par la formule de Taylor

$$P(X) = \sum_{k=0}^{n} \frac{P^{(k)}(\alpha)}{k!} (X - \alpha)^k = \sum_{k \in \mathbb{N}} \lambda_k (X - \alpha)^k \qquad \text{avec} \quad \lambda_k := \begin{cases} \frac{P^{(k)}(\alpha)}{k!} & \text{si } k \leq n \\ 0 & \text{si } k > n \end{cases}$$

La famille $(\lambda_k)_{k\in\mathbb{N}}$ est bien presque nulle : P s'écrit donc comme une combinaison linéaire des $((X-\alpha)^k)_{k\in\mathbb{N}}$.

5.4 Famille libre (finie ou infinie)

Définition 14.38 (Famille libre (cas général))

Soit $(e_i)_{i\in I}$ une famille (finie ou infinie) de vecteurs de E. On dit que $(e_i)_{i\in I}$ est une famille libre si

$$\forall (\lambda_i)_{i \in I} \in \mathbb{K}^{(I)} \qquad \sum_{i \in I} \lambda_i e_i = 0 \quad \Longrightarrow \quad (\forall i \in I \quad \lambda_i = 0)$$

Pour l'exemple qui suit, on rappelle que pour tout ensemble $A \subset \mathbb{R}$, on note

$$1_A: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{si } x \notin A \end{cases}$$

Exemple 43. On se place sur le \mathbb{R} -e.v. $C^0(\mathbb{R})$. Montrons que la famille $(1_{[0,k]})_{k\in\mathbb{N}}$ est libre. Soit $(\lambda_k)_{k\in\mathbb{N}}$ une famille presque nulle telle que

$$\sum_{k\in\mathbb{N}} \lambda_k 1_{[0,k]} = 0$$

et montrons que chaque λ_k est nul.

22 / 23 G. Peltier

5.5 Base (finie ou infinie)

Définition 14.39 (Base (cas général))

Soit $(e_i)_{i\in I}$ une famille (finie ou infinie) de vecteurs de E. On dit que $(e_i)_{i\in I}$ est une $\underline{\text{base } (\text{de }E)}$ si $(e_i)_{i\in I}$ est une famille génératrice et libre.

Proposition 14.40

Une famille $(e_i)_{i \in I}$ est une base de E si et seulement si

$$\forall x \in E$$
 $\exists ! (\lambda_i)_{i \in I} \in \mathbb{K}^{(I)}$ $x = \sum_{i \in I} \lambda_i e_i$

Les scalaires $(\lambda_i)_{i \in I}$ sont appelés les coordonnées de x dans la base $(e_i)_{i \in I}$.

Autrement dit, tout vecteur de E se décompose selon un nombre **fini** de vecteurs de la famille $(e_i)_{i \in I}$, et l'écriture de cette décomposition est unique.

Exemple 44. La famille $(X^k)_{k\in\mathbb{N}}$ est une base de $\mathbb{K}[X]$, appelée base canonique.

Exemple 45. L'exemple 42 montre que la famille $((X - \alpha)^k)_{k \in \mathbb{N}}$ est génératrice de $\mathbb{K}[X]$.

6 Compléments : algèbre (hors-programme)

Définition 14.41 (Non officiel : algèbre)

On dit que $(A, +, \bullet, \times)$ est une \mathbb{K} -algèbre si :

- 1. $(A, +, \bullet)$ est un \mathbb{K} -e.v.
- 2. $(A, +, \times)$ est un anneau.
- 3. La loi \times vérifie :

$$\forall \lambda \in \mathbb{K} \quad \forall x, y \in \mathcal{A} \qquad \lambda \cdot (x \times y) = (\lambda \cdot x) \times y = x \times (\lambda \cdot y)$$

Si de plus $(A, +, \times)$ est un anneau *commutatif*, on dira que $(A, +, \cdot, \times)$ est une \mathbb{K} -algèbre *commutative*.

La notion de \mathbb{K} -algèbre est en fait plus générale : la définition ci-dessus est celle d'une $\underline{\mathbb{K}}$ -algèbre unifère associative. On parlera cependant de " \mathbb{K} -algèbre" pour faire plus court.

On verra dans un chapitre ultérieur que la troisième propriété (couplée à la distributivité) signifie que l'application suivante est bilinéaire :

$$\times: \mathcal{A}^2 \to \mathcal{A}$$

 $(x,y) \mapsto x \times y$

Exemple 46.

- \mathbb{K} , $\mathbb{K}^{\mathbb{N}}$, \mathbb{K}^{Ω} , $\mathbb{K}[X]$, $\mathbb{K}[X]$, sont toutes des \mathbb{K} -algèbres commutatives.
- $\mathcal{M}_n(\mathbb{K})$ est une \mathbb{K} -algèbre non commutative.
- $\mathcal{M}_{n,p}(\mathbb{K})$ avec $n \neq p$ n'est pas une \mathbb{K} -algèbre car ce n'est pas un anneau.

G. Peltier 23 / 23